Number Systems
and

Number Representation

Goals of these Lectures

Help you learn (or refresh your memory) about:
* The binary, hexadecimal, and octal number systems
» Finite representation of unsigned integers
 Finite representation of signed integers
» Finite representation of rational numbers (if time)

Why?
* A power programmer must know number systems and data
representation to fully understand C’s primitive data types

-

Agenda

Number Systems (Lecture 1)
Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)

>/

The Decimal Number System

Name
» “decem” (Latin) => ten

Characteristics

« Ten symbols
01234567829
« Positional
« 2945 # 2495
e 2945 = (2*103) + (9*102) + (4*10%) + (5*109)

(Most) people use the decimal number system

The Binary Number System

Name
* “binarius” (Latin) => two

Characteristics
 Two symbols
0 1
* Positional
« 10105 # 1100,

Most (digital) computers use the binary number system

Terminology
« Bit: a binary digit
» Byte: (typically) 8 bits

Decimal-Binary Equivalence

Decimal Binary Decimal Binary
0 0 16 10000
1 1 17 10001
2 10 18 10010
3 11 19 10011
4 100 20 10100
5 101 21 10101
6 110 22 10110
7 111 23 10111
8 1000 24 11000
9 1001 25 11001

10 1010 26 11010
11 1011 27 11011
12 1100 28 11100
13 1101 29 11101
14 1110 30 11110
15 1111 31 11111

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

100101, = (1*2°)+(0%*2%)+(0*23) + (1*22) +(0*2%) + (1*2°)
32 + 0 + 0 + 4 + 0 + 1

= 37

Decimal-Binary Conversion

Decimal to binary: do the reverse
« Determine largest power of 2 < number; write template

37 = (?2%25)+ (?2%24)+ (?2%23)+ (?2%22) + (?2*21) + (?*20)

 Fill intemplate

37 = (1%25)+ (0%24)+ (0*23) + (1*22) + (0*21) + (1*20)
-32

5
-4

1 100101,

0

Decimal-Binary Conversion

Decimal to binary shortcut
» Repeatedly divide by 2, consider remainder

A

37 / 2 =18 R 1

18 / 2= 9RO

9 /2= 4R1 Read from bottom
4/2= 2RO to top: 1001014
2/ 2= 1RO

1 /2= OR1

The Hexadecimal Number System

Name
* “hexa” (Greek) => six
» “decem” (Latin) => ten

Characteristics

e Sixteen symbols
*«0123456789ABCDETF

 Positional
« A13D,; # 3DAl,

Computer programmers often use the hexadecimal number
system

10

Decimal-Hexadecimal Equivalence

Decimal Hex
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 A
11 B
12 C
13 D
14 E
15 F

Decimal Hex

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

Decimal Hex

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

11

Decimal-Hexadecimal Conversion

Hexadecimal to decimal: expand using positional notation

25, = (2*161) + (5*16°)
32+ 5

37

Decimal to hexadecimal: use the shortcut

37 / 16
2 / 16

(@ B \V)

A X
N !

I Read from bottom
to top: 25,

12

Binary-Hexadecimal Conversion

Observation: 161 =24
» Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

Digit count in binary number
not a multiple of 4 =>

pad with zeros on left

1010000100111101,
A 1 3 Dy

Hexadecimal to binary

A 1 3 b, Dlscarq leading Zeros
1010000100111101, from binary number if
appropriate

13

The Octal Number System

Name
* “octo” (Latin) => eight

Characteristics

« Eight symbols
012 34567

 Positional
« 1743, # 7314,

Computer programmers often use the octal number system

14

Decimal-Octal Equivalence

Decimal Octal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 10
9 11

10 12
11 13
12 14
13 15
14 16
15 17

Decimal Octal

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37

Decimal Octal

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57

15

Decimal-Octal Conversion

Octal to decimal: expand using positional notation

37, = (3*81) + (7%89)
= 24 + 7
= 31

Decimal to octal: use the shortcut

o w
VY
w

I Read from bottom
to top: 37,

w K
~ N
0
i

16

Binary-Octal Conversion

Observation: 81 =23
* Every 1 octal digit corresponds to 3 binary digits

Binary to octal

Digit count in binary number
not a multiple of 3 =>

pad with zeros on left

001010000100111101,
1 2 0 4 7 5

Octal to binary

1 2 0 4 7 5, Dlscarq leading Zeros
001010000100111101, from binary number if
appropriate

17

-

Agenda

Number Systems (Lecture 1)
Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)

)

Bitwise Operations

Bitwise AND

® Similar to logical AND (& &),except it works on a bit-by-bit
manner

® Denoted by a single ampersand: &

(1001 &
0101)=
0001

Bitwise OR

® Similar to logical OR (| |), except it works on a bit-by-bit
manner

® Denoted by a single pipe character: |

(L1001 |
0101) =
1101

Bitwise XOR

® Exclusive OR,denoted by a carat:»

® Similar to bitwise OR, except that if both inputs are 1 or 0
then the result is O

(1001 ~
0101)=
1100

Bitwise NOT

® Similar to logical NOT (!), except it works on a bit-by-bit
manner

® Denoted by a tilde character:~

~1001 =
0110

Unsigned Data Types: Java vs. C

Java has type
e 1nt
« Can represent signed integers

C has type:
e signed int
« Can represent signed integers
e 1nt
e Same as signed int
e unsigned int

« Can represent only unsigned integers

To understand C, must consider representation of both
unsigned and signed integers

24

Representing Unsigned Integers

Mathematics
« Rangeis 0 to «

Computer programming
* Range limited by computer’s word size

« Word size is n bits => range is 0 to 2"—1
« Exceed range => overflow

Nobel computers with gcc217
 n=32,sorangeis 0 to 232—- 1(4,294,967,295)

Pretend computer
* n=4,sorangeis 0to 24— 1(15)

Hereafter, assume word size =4
 All points generalize to word size = 32, word size = n

25

Representing Unsigned Integers

On pretend computer

Unsigned
Integer

oo JdJo Ul d WM R O

Rep

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

26

Adding Unsigned Integers

Addition
1
3 0011,
+ 10 + 1010,
13 1101,
11
7 0111,
+ 10 + 1010,
1 10001,

Results are mod 24

Start at right column
Proceed leftward

Carry 1 when necessary

Beware of overflow

27

Subtracting Unsigned Integers

Subtraction
12

0202
10 1010,
- 7 - 0111,
3 0011,

2
3 0011,
- 10 - 1010,
9 1001,

Results are mod 24

Start at right column
Proceed leftward

Borrow 2 when necessary

Beware of overflow

28

Shift Left

® Move all the bits N positions to the left, subbing in N Os
on the right

Shift Left

® Move all the bits N positions to the left, subbing in N Os
on the right

1001

Shift Left

® Move all the bits N positions to the left, subbing in N Os

on the right

1001 << 2
100100

Shift Left

® Useful as a restricted form of multiplication

® Question:how?

1001 << 2 =
100100

Shift Left as Multiplication

® Equivalent decimal operation:

234

%

Shift Left as Multiplication

® Equivalent decimal operation:

234 << 1 =
2340

>

Shift Left as Multiplication

® Equivalent decimal operation:

234 << 1 =
2340

234 << 2 =
23400

%)

Multiplication

® Shifting left N positions multiplies by (base) N

® Multiplying by 2 or 4 is often necessary (shift left | or 2
positions,respectively)

® Often a whooole lot faster than telling the processor to

multiply

234 << 2 =
23400

36

Shift Right

® Move all the bits N positions to the right, subbing in either
N Os or N 1s on the left

® Two different forms

Shift Right

® Move all the bits N positions to the right, subbing in either
N Os or N (whatever the leftmost bit is)s on the left

® Two different forms
1001 >> 2 =
either 0010 or 1110

Shift Right as Division

® Question: If shifting left multiplies,what does shift right do?

® Answer: divides in a similar way, but truncates result

39

Shift Right as Division

® Question: If shifting left multiplies,what does shift right do?

® Answer: divides in a similar way, but truncates result

234

40

Shift Right as Division

® Question: If shifting left multiplies,what does shift right do?

® Answer: divides in a similar way, but truncates result

234 >> 1 =
23

41

Shifting Unsigned Integers

Bitwise right shift (>>): fill on left with zeros

10 >> 1 => 5

1010, 0101,

10 >> 2 => 2

1010, 0010,

5 <1 =>10

0101, 1010,

3 <K 2 =>12

0011, 1100,
Results are mod 24

What is the effect
arithmetically? (No
fair looking ahead)

What is the effect
arithmetically? (No
fair looking ahead)

42

Other Operations on Unsigned Ints

Bitwise NOT (~)
* Flip each bit

~10 => 5
1010, 0101,

Bitwise AND (&)
* Logical AND corresponding bits

10 1010, |
& 7 & 0111, Useful for setting

—— S selected bits to 0

2 0010,

Other Operations on Unsigned Ints

Bitwise OR: (|)

» Logical OR corresponding bits

10 1010,

| 1 | 0001, Useful for setting
T T selected bits to 1
11 1011,

Bitwise exclusive OR (*)
 Logical exclusive OR corresponding bits

10 1010,
~ 10 A 1010, X M x sets
T N all bits to 0
0 0000,

The binary XOR operation will always produce a 1 output if either of its inputs is
1 and will produce a 0 output if both of its inputs are 0 or 1. 44

Aside: Using Bitwise Ops for Arith

Can use <<, >>, and & to do some arithmetic efficiently

x * 2¥ == x <<y
e 3*%4 = 3%¥22 = 3 << 2 => 12
0011, 1100,

x [/ 2Y==x >>y

Fast way to multiply
by a power of 2

Fast way to divide

+ 13/4 = 13/22 = 13 >> 2 => 3 by a power of 2
1101, 0011,

x % 2¥==x & (2¥-1)
e 13%4 = 13%22 = 13&(22-1)

Fast way to mod
by a power of 2

= 13&3 => 1 13
& 3

1

1101,
& 0011,

0001, 45

Two Forms of Shift Right

® Subbing in 0s makes sense

® What about subbing in the leftmost bit?

® And why is this called “arithmetic” shift right?

1100 (arithmetic)>> 1 =
1110

Answer... Sort of

® Arithmetic form is intended for numbers in two's complement
(next lecture), whereas the non-arithmetic form is intended

for unsigned numbers

-

Agenda

Number Systems (Lecture 1)
Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)

2/

Signed Magnitude

1111
1110
1101
1100
1011
1010
1001
1000
0000
0001
0010
0011
0100
0101
0110
0111

Definition

High-order bit indicates sign
0 => positive
1 => negative

Remaining bits indicate magnitude
1101, = -101, = -5
0101, = 101, = 5

A N e

S:STn Magnitude Bifs

49

Signed Magnitude (cont.)

Rep
1111
1110
1101
1100
1011
1010
1001
1000
0000
0001
0010
0011
0100
0101
0110
0111

Computing negative

neg(x) = flip high order bit of x
neg (0101;) = 1101,
neg(1101;) = 0101,

Pros and cons

+ easy for people to understand

+ symmetric

- two reps of zero

- one of the bit patterns is wasted.
- addition doesn't work the way we want it to.

50

Signed Magnitude (cont.)

Problem #1: "The Case of the Missing Bit Pattern":

How many possible bit patterns can be created with 4 bits?

Easy, we know that's 16. In unsigned representation, we were able to represent
16 numbers: 0,1, 2,3,4,5,6, 7,8, 9,10, 11, 12, 13, 14, and 15.

But with signed magnitude, we are only able to represent 15 numbers: -7, -6, -5,
4,-3,-2,-1,0,1,2,3,4,5,6,and 7.

There's still 16 bit patterns, but one of them is either not being used or is
duplicating a number. That bit pattern is "1000B’.

When we interpret this pattern, we get '-0' which is both nonsensical (negative
zero? come on!) and redundant (we already have '0000B' to represent 0).

-7 6 5 -4 -3 -2 -] 0 1 2 3 4 5 6 7

11117 1110 1101 1100 1011 1010 1001 ?Ozslgg 0001 0010 0011 0100 0101 0110 0111

51

Signed Magnitude (cont.)

Problem #2: "Requires Special Care and Feeding": Remember we wanted to
have negative binary numbers so we could use our binary addition algorithm to
simulate binary subtraction. How does signed magnitude fare with addition? To
test it, let's try subtracting 2 from 5 by adding 5 and -2. A positive 5 would be

represented with the bit pattern '0101B' and -2 with '1010B'. Let's add these two

numbers and see what the result is:
0101
+1010

Now we interpret the result as a signed magnitude number. The sign is ‘1’
(negative) and the magnitude is '7'. So the answer is a negative 7. But, wait a
minute, 5-2=3! This obviously didn't work.

Conclusion: signed magnitude doesn't work with regular binary addition algorithms.
52

One's Complement

Rep
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111

Definition
High-order bit has weight -7 (- 2"+ 1)

1010,

0010, =

= (1%-7)+(0*4)+ (1*2)+ (0*1)
= -5
(0*=7)+(0%4) + (1%2) + (0*1)
= 2

53

One's Complement (cont.)

Integer

ReE
1000

1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110

Computing negative
neg(x) = ~x
neg(0101;,) = 1010,
neg(1010;) = 0101,

Computing negative (alternative)
neg(x) = M115- x
neg(0101,) = 1111, - 0101
= 1010,
neg(1010;) = 1111, - 1010,
= 0101,

B

Pros and cons
+ symmetric
- two reps of zero

54

Two’s Complement

Integer

ReE
1000

1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111

Definition

High-order bit has weight -8 (-2")

1010, = (1*-8)+(0*4)+(1*2)+(0*1)
= -6

0010 = (0*-8)+(0*4)+(1*2)+ (0*1)
= 2

35

Two’s Complement (cont.)

Integer Rep | COMputing negative
-8 1000 neg(x) = ~X + 1

& 1010 | Neg(x) = onescomp(x) + 1

-5 1011 neg(0101;) = 1010; + 1 = 1011,
-4 1100 neg(1011l;) = 0100; + 1 = 0101
-3 1101

-2 1110

-1 1111 | Pros and cons

0 0000 -
0001 not symmetric

1

> 0010 | T one rep of zero
3 0011
4 0100
5 0101
6 0110
7 0111

56

Two’s Complement (cont.)

Almost all computers use two’s complement to represent
signed integers

Why?
* Arithmetic is easy
 Will become clear soon

Hereafter, assume two’s complement representation of
signed integers

57

Two's Complement

® Way to represent positive integers, negative integers, and zero

® If 1 is in the most significant bit (generally leftmost bit in this
class),then it is negative

Decimal toTwo's Complement

® Example: -5 decimal to binary (twos complement)

http://sandbox.mc.edu/~bennet/cs110/tc/dtotc.html

Decimal toTwo's Complement

® Example:-5 decimal to binary (twos complement)

® First, convert the magnitude to an unsigned representation

Decimal toTwo's Complement

® Example:-5 decimal to binary (two's complement)

® First, convert the magnitude to an unsigned representation

5 (decimal) = 0101 (binary)

~
Decimal toTwo's Complement

® Then, take the bits,and negate them

~
Decimal toTwo's Complement

® Then, take the bits,and negate them

0101

Decimal toTwo's Complement

® Then, take the bits,and negate them

~0101 =
1010

~
Decimal toTwo's Complement

® Finally, add one:

~
Decimal toTwo's Complement

® Finally, add one:

1010

~
Decimal toTwo's Complement

® Finally, add one:
1010 + 1 =
1011

~
Two’s Complement to Decimal

® Same operation: negate the bits,and add one

Two’s Complement to Decimal

® Same operation: negate the bits,and add one

1011

Two’s Complement to Decimal

® Same operation: negate the bits,and add one

~1011 =
0100

Two’s Complement to Decimal

® Same operation: negate the bits, and add one

0100

Two’s Complement to Decimal

® Same operation: negate the bits,and add one

0100 + 1 =
0101

Two’s Complement to Decimal

® Same operation: negate the bits,and add one

0100 + 1 =
0101 =
-5

/

We started with
1011 - negative

Addition

http://sandbox.mc.edu/~bennet/cs110/textbook/module3 2.html

Building Up Addition

® Question: how might we add the following, in decimal?

986
+123

Building Up Addition
® Question: how might we add the following, in decimal?

9806
+123

?

Building Up Addition

® Question: how might we add the following, in decimal?

986
+123

Building Up Addition

® Question: how might we add the following, in decimal?

986
+123

Carry:1 q 6

Building Up Addition

® Question: how might we add the following, in decimal?

986
+123

1 8 0
9 +2 +3
+1 —— ——

Building Up Addition

® Question: how might we add the following, in decimal?

986
+123

Carry:1 1 8 S
9 +2 +3

+1 - - --

—— 0 9

Building Up Addition

® Question: how might we add the following, in decimal?

986
+123

1 1 8 0
0 +2 +3

+0
o +1 —— ——
1 —— 0 9

Core Concepts

® We have a “primitive” notion of adding single digits, along
with an idea of carrying digits

® We can build on this notion to add numbers together that
are more than one digit long

Now in Binary

® Arguably simpler - fewer one-bit possibilities

Now in Binary

® Arguably simpler - fewer one-bit possibilities

0 0 1 1
+0 +1 +0 +1
0 1 1 0

Carry: 1

Chaining the Carry

® Also need to account for any input carry

0 0 0 0
0 0 1 1
+0 +1 +0 Al
0 1 1 o Carry: 1
I 1 1 1
0 0 1 1
+0 £, +() +1
1 0 Carry:1] 0 Carry:1f 1 Carry:1

Adding Multiple Bits

® How might we add the numbers below?

Adding Multiple Bits

® How might we add the numbers below?

Adding Multiple Bits

® How might we add the numbers below?

Adding Multiple Bits

® How might we add the numbers below?

110
011

Adding Multiple Bits

® How might we add the numbers below?

0110
011

Adding Multiple Bits

® How might we add the numbers below?

OIL1 O
011

Output Carry Bit Result Bits

Another Example

Another Example

Another Example

Another Example

Another Example

Output Carry Bit Result Bits

Output Carry Bit Significance

® For unsigned numbers, it indicates if the result did not fit all
the way into the number of bits allotted

® May be an error condition for software

Signed Addition

® Question: what isthe result of the following operation?

011
+011

?

Signed Addition

® Question:what is the result of the following operation?

011
+011

0110

Overflow

® In this situation, overflow occurred: this means that both the

operands had the same sign, and the result’s sign differed

011
+011

110

® Possibly a software error

Overflow vs. Carry

® These are different ideas
® Carry is relevant to unsigned values

® Overflow is relevant to signed values

111 011 111 001
+001 +011 +100 +001
000 110 011 010

No Overflow; | Overflow; | Overflow;| No Overflow;
Carry No Carry | Carry No Carry

Adding Signed Integers

pos + pos
11
3 0011,

+ 3 + 0011,

6 0110,
pos + neg
1111
3 0011,
+ -1 + 1111,
2 10010,
neg + neg
11
-3 1101,
+ -2 + 1110,

-5 11011,

pos + pos (overflow)

7
+ 1

-8

111
0111,
+ 0001,

1000,

neg + neg (overflow)

-6
+ -5

5

11
1010,
+ 1011,

10101,

Subtracting Signed Integers

Perform subtraction Compute two’s comp
with borrows or and add
1
22
3 0011, ‘ 3 0011,
- 4 - 0100, + -4 + 1100,
-1 1111, -1 1111,
111

-5 1011, ‘ -5 1011
- 2 - 0010, + -2 + 1110

-7 1001, il 11001

Shifting Signed Integers

Bitwise (logical/arithmetic) left shift (<<): fill on right with zeros

A

3<<1=>6 Shift by n =
0011, 01104 multiplying by 2"

-3 <1 => -6
1101, 1010,

Bitwise arithmetic right shift: fill on left with sign bit

6 >> 1 => 3

0110, 0011, Shift by n = dividing by 2"
and Round-floor

-6 >> 1 => -3
1010, 1101,

Results are mod 24

Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros

6 > 1 => 3
0110, 0011,

-6 >> 1 => 5 ?
10104 0101,

Right shift (>>) could be logical or arithmetic
« Compiler designer decides
« Logical shift is ideal for unsigned binary numbers
» Arithmetic shift is ideal for signed two’s complement binary numbers

Other Operations on Signed Ints

Bitwise NOT (~)

« Same as with unsigned ints

Bitwise AND (&)

« Same as with unsigned ints

Bitwise OR: (|)

« Same as with unsigned ints

Bitwise exclusive OR (*)
« Same as with unsigned ints

Bitwise Operations as Masks

X: it is an unknown binary number and can be either O or 1

AND (&) Operation:
X&0=0&X=0
X&1=1&X=X
X&X=X

OR (|) Operation:
X|1=1|X=1
X|0=0]|X=X
X | X=X

XOR (") Operation:
XA1=1AX="~X

XA0=0"2AX=X
XAX=0

Mask Example

Specify the mask you would need to isolate bit 0 of the unknown number. The result

of the operation should be 0 (0x0000) if bit 0 is 0, and non-zero if bit 0 is 1. Express it

as a 4-digit hexadecimal number.

Answer:

We know that 1 hexadecimal digit = 4 bits in binary
15... ... 3210 < Bit position

0000 0000 0000 0000 < zero (0xD0O0O0)
000 0000 0000 0001 < nonzerg (0x0001)

if bit0isO
if bitOis1

In this case, we can use AND operation (&) and then the mask(16 bits) will be as
0000 0000 0000 0001 =>0001 in hexadecimal

Therefore, the answer is answer & as the operation and 0x0001 as the mask.

Mask Example

Specify the mask you would need to set bit 1 of the unknown number to zero. That is,
the result of this operation results in a new number, which the unknown number will be
subsequently set to. Express it as a 4-digit hexadecimal number.

Answer:
We know that 1 hexadecimal digit = 4 bits in binar

Bit position
Unknown number
Mask

XXXX XXXX XXXX XXO0X

In this case, we €an use AND operation (&) and then the mask(16 bits) will be as
1111 1111 1111 1101 => FFFD in hexadecimal

Therefore, the answer is & as the operation and OxFFFD as the mask.

Summary

The binary, hexadecimal, and octal number systems
Finite representation of unsigned integers

Finite representation of signed integers

Essential for proper understanding of
« C or Java primitive data types
« Assembly language
 Machine language

