
Number Systems  
and

Number Representation



Goals of these Lectures

Help you learn (or refresh your memory) about:
• The binary, hexadecimal, and octal number systems
• Finite representation of unsigned integers
• Finite representation of signed integers
• Finite representation of rational numbers (if time)

Why?
• A power programmer must know number systems and data  

representation to fully understand C’s primitive data types
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Agenda
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Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)



The Decimal Number System

Name
• “decem” (Latin) => ten

Characteristics
• Ten symbols
• 0 1 2 3 4 5 6 7 8 9

• Positional
• 2945 ≠ 2495
• 2945 = (2*103) + (9*102) + (4*101) + (5*100)

(Most) people use the decimal number system
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The Binary Number System

Name
• “binarius” (Latin) => two

Characteristics
• Two symbols
• 0 1

• Positional
• 1010B ≠ 1100B

Most (digital) computers use the binary number system

Terminology
• Bit: a binary digit
• Byte: (typically) 8 bits
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Decimal-Binary Equivalence
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Decimal BinaryBinaryDecimal
16 1000000
17 1000111
18 10010102
19 10011113
20 101001004
21 101011015
22 101101106
23 101111117
24 1100010008
25 1100110019
26 11010101010
27 11011101111
28 11100110012
29 11101110113
30 11110111014
31 11111111115

... ...



Decimal-Binary Conversion
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Binary to decimal: expand using positional notation

(1*25)+(0*24)+(0*23)+(1*22)+(1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
32 + 0 + 0 + 4 + 0 + 1

100101B =
=

37=



Decimal-Binary Conversion
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Decimal to binary: do the reverse
• Determine largest power of 2 ≤ number; write template

• Fill in template

37 = (?*25)+(?*24)+(?*23)+(?*22)+(?*21)+(?*20)

37 = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
-32

5
-4
1 100101B
-1
0



Decimal-Binary Conversion

Decimal to binary shortcut
• Repeatedly divide by 2, consider remainder

37 / 2 = 18 R 1
18 / 2 = 9 R 0
9 / 2 = 4 R 1
4 / 2 = 2 R 0
2 / 2 = 1 R 0
1 / 2 = 0 R 1

Read from bottom  
to top: 100101B
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The Hexadecimal Number System

Name
• “hexa” (Greek) => six
• “decem” (Latin) => ten

Characteristics
• Sixteen symbols

• 0 1 2 3 4 5 6 7 8 9 A B C D E F

• Positional
• A13DH ≠ 3DA1H

Computer programmers often use the hexadecimal number
system
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Decimal-Hexadecimal Equivalence
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HexDecimalDecimal HexHexDecimal
203216 1000
213317 1111
223418 1222
233519 1333
243620 1444
253721 1555
263822 1666
273923 1777
284024 1888
294125 1999
2A4226 1AA10
2B4327 1BB11
2C4428 1CC12
2D4529 1DD13
2E4630 1EE14
2F4731 1FF15
......



Decimal-Hexadecimal Conversion

Hexadecimal to decimal: expand using positional notation

Decimal to hexadecimal: use the shortcut

(5*160)   
5

25H = (2*161) +
= 32 +

37=

37 / 16 = 2 R 5
2 / 16 = 0 R 2

Read from bottom  
to top: 25H
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Binary-Hexadecimal Conversion

Observation: 161 = 24

• Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

1010000100111101B  
A 1 3 DH

Digit count in binary number  
not a multiple of 4 =>
pad with zeros on left

Hexadecimal to binary

A 1 3 DH 
1010000100111101B

Discard leading zeros
from binary number if
appropriate
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The Octal Number System

Name
• “octo” (Latin) => eight

Characteristics
• Eight symbols

• 0 1 2 3 4 5 6 7
• Positional

• 1743O ≠ 7314O

Computer programmers often use the octal number system
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Decimal-Octal Equivalence
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OctalDecimalDecimal OctalOctalDecimal
403216 2000
413317 2111
423418 2222
433519 2333
443620 2444
453721 2555
463822 2666
473923 2777
504024 30108
514125 31119
524226 321210
534327 331311
544428 341412
554529 351513
564630 361614
574731 371715
......



Decimal-Octal Conversion

Octal to decimal: expand using positional notation

Decimal to octal: use the shortcut

37O = (3*81) + (7*80)
= 24 + 7

31=

31 / 8 = 3 R 7
3 / 8 = 0 R 3

Read from bottom  
to top: 37O
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Binary-Octal Conversion

Observation: 81 = 23

• Every 1 octal digit corresponds to 3 binary digits

Binary to octal

001010000100111101B
1 2 0 4 7 5O

Digit count in binary number  
not a multiple of 3 =>
pad with zeros on left

Discard leading zeros
from binary number if
appropriate

Octal to binary

1 2 0 4 7 5O
001010000100111101B
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Agenda

18

Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)



Bitwise Operations



BitwiseAND

• Similar to logical AND (&&),except it  works on a bit-by-bit
manner

• Denoted by a single ampersand:&

(1001 &
0101)=
0001



Bitwise OR

• Similar to logical OR (||), except it works on a bit-by-bit
manner

• Denoted by a single pipe character:|

(1001 |
0101)=
1101



Bitwise XOR

• Exclusive OR,denoted by a carat:^

• Similar to bitwise OR, except that if both inputs are 1 or 0 
then the result is 0

(1001 ^
0101)=
1100



Bitwise NOT

• Similar to logical NOT (!), except it works on a bit-by-bit
manner

• Denoted by a tilde character:~

~1001 =  
0110



Unsigned Data Types: Java vs. C
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Java has type
• int

• Can represent signed integers

C has type:
• signed int

• Can represent signed integers
• int

• Same as signed int
• unsigned int

• Can represent only unsigned integers

To understand C, must consider representation of both  
unsigned and signed integers



Representing Unsigned Integers
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Mathematics
• Range is 0 to ∞

Computer programming
• Range limited by computer’s word size
• Word size is n bits => range is 0 to 2n – 1
• Exceed range => overflow

Nobel computers with gcc217
• n = 32, so range is 0 to 232 – 1 (4,294,967,295)

Pretend computer
• n = 4, so range is 0 to 24 – 1 (15)

Hereafter, assume word size = 4
• All points generalize to word size = 32, word size = n



Representing Unsigned Integers
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On pretend computer
Rep

Unsigned 
Integer

00000
00011
00102
00113
01004
01015
01106
01117
10008
10019
101010
101111
110012
110113
111014
111115



Adding Unsigned Integers

Addition

Results are mod 24

7
+ 10

11
0111B

+ 1010B

1 10001B

1
3 0011B

1010B
----

+10
--

+

1101B13

Start at right column  
Proceed leftward
Carry 1 when necessary

Beware of overflow
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Subtracting Unsigned Integers

Subtraction

3
- 10

2
0011B

- 1010B

9 1001B

Results are mod 24

10
- 7

12
0202
1010B

- 0111B

3 0011B

Start at right column  
Proceed leftward
Borrow 2 when necessary

Beware of overflow
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Shift Left

• Move all the bits N positions to the left, subbing in N 0s
on the right



Shift Left

1001

• Move all the bits N positions to the left, subbing in N 0s
on the right



Shift Left

1001 << 2 =
100100

• Move all the bits N positions to the left, subbing in N 0s
on the right



Shift Left

• Useful as a restricted form of multiplication

• Question:how?

1001 << 2 =
100100



Shift Left as Multiplication

• Equivalent decimal operation:

234
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• Equivalent decimal operation:

234 << 1 =
2340

Shift Left as Multiplication
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• Equivalent decimal operation:

234 << 1 =
2340

234 << 2 =
23400

Shift Left as Multiplication
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Multiplication

• Shifting left N positions multiplies by(base)N

• Multiplying by 2 or 4 is often necessary (shift left 1 or 2 
positions,respectively)

• Often a whooole lot faster than telling the processor to
multiply

234 << 2 =
23400
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Shift Right

• Move all the bits N positions to the right, subbing in either
N 0s or N 1s on the left

• Two different forms



Shift Right

• Move all the bits N positions to the right, subbing in either
N 0s or N (whatever the leftmost bit is)s on the left

• Two different forms
1001 >> 2 =
either 0010 or 1110



Shift Right as Division

• Question: If shifting left multiplies,what does shift right do?

• Answer: divides in a similar way, but truncates result
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Shift Right as Division

• Question: If shifting left multiplies,what does shift right do?

• Answer: divides in a similar way, but truncates result

234
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Shift Right as Division

• Question: If shifting left multiplies,what does shift right do?

• Answer: divides in a similar way, but truncates result

234 >> 1 =
23
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Shifting Unsigned Integers

Results are mod 24

5 << 1 => 10

3 << 2 => 12

Bitwise right shift (>>): fill on left with zeros

What is the effect  
arithmetically? (No  
fair looking ahead)

Bitwise left shift (<<): fill on right with zeros

What is the effect  
arithmetically? (No  
fair looking ahead)
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=> 5110 >>

0101B1010B

=> 2210 >>

0010B1010B

0101B 1010B

0011B 1100B



Other Operations on Unsigned Ints

Bitwise NOT (~)
• Flip each bit

~10 => 5

10
& 7
--
2
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1010B  
& 0111B
----
0010B

Useful for setting  
selected bits to 0

1010B 0101B

Bitwise AND (&)                            
• Logical AND corresponding bits



Other Operations on Unsigned Ints

Bitwise OR: (|)
• Logical OR corresponding bits

Bitwise exclusive OR (^)
• Logical exclusive OR corresponding bits

10
| 1

--
11

1010B
| 0001B
----
1011B

Useful for setting  
selected bits to 1

10
^ 10
--
0
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1010B
^ 1010B
----
0000B

x ^ x sets  
all bits to 0

The binary XOR operation will always produce a 1 output if either of its inputs is 
1 and will produce a 0 output if both of its inputs are 0 or 1. 



Aside: Using Bitwise Ops for Arith

Can use <<, >>, and & to do some arithmetic efficiently

x * 2y == x << y
• 3*4 = 3*22 = 3 << 2 => 12

x / 2y == x >> y
• 13/4 = 13/22 = 13 >> 2 => 3

x % 2y == x & (2y-1)
• 13%4 = 13%22 = 13&(22-1)
= 13&3 => 1

Fast way to multiply
by a power of 2

Fast way to divide
by a power of 2

Fast way to mod
by a power of 2

45

13
& 3

1101B  
& 0011B

1 0001B

0011B 1100B

1101B 0011B



Two Forms of Shift Right

• Subbing in 0s makes sense

• What about subbing in the leftmost bit?

• And why is this called “arithmetic” shift right?

1100 (arithmetic)>> 1 =
1110



Answer... Sort of

• Arithmetic form is intended for numbers in two's complement

(next lecture), whereas the non-arithmetic form is intended 

for unsigned numbers



Agenda
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Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)



Signed Magnitude
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RepInteger
1111-7
1110-6
1101-5
1100-4
1011-3
1010-2
1001-1
1000-0
00000
00011
00102
00113
01004
01015
01106
01117

Definition
High-order bit indicates sign  

0 => positive
1 => negative

Remaining bits indicate magnitude

B B1101 = -101 = -5
0101B = 101B = 5



Signed Magnitude (cont.)

RepInteger
1111-7
1110-6
1101-5
1100-4
1011-3
1010-2
1001-1
1000-0
00000
00011
00102
00113

4
5
6
7

0100
0101
0110
0111
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Computing negative
neg(x) = flip high order bit of x  

neg(0101B) = 1101B  
neg(1101B) = 0101B

Pros and cons
+ easy for people to understand
+ symmetric
- two reps of zero
- one of the bit patterns is wasted. 
- addition doesn't work the way we want it to.



Signed Magnitude (cont.)
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Problem #1: "The Case of the Missing Bit Pattern": 

How many possible bit patterns can be created with 4 bits? 

Easy, we know that's 16. In unsigned representation, we were able to represent 

16 numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15. 

But with signed magnitude, we are only able to represent 15 numbers: -7, -6, -5, 

-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, and 7. 

There's still 16 bit patterns, but one of them is either not being used or is 

duplicating a number. That bit pattern is '1000B’. 

When we interpret this pattern, we get '-0' which is both nonsensical (negative 

zero? come on!) and redundant (we already have '0000B' to represent 0).



Signed Magnitude (cont.)
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Problem #2: "Requires Special Care and Feeding": Remember we wanted to   

have negative binary numbers so we could use our binary addition algorithm to 

simulate binary subtraction. How does signed magnitude fare with addition? To

test it, let's try subtracting 2 from 5 by adding 5 and -2. A positive 5 would be 

represented with the bit pattern '0101B' and -2 with '1010B'. Let's add  these two 

numbers and see what the result is:   
0101

+1010
----------

1111

Now we interpret the result as a signed magnitude number. The sign is ‘1’

(negative) and the magnitude is '7'. So the answer is a negative 7. But, wait a 

minute, 5-2=3! This obviously didn't work. 

Conclusion: signed magnitude doesn't work with regular binary addition algorithms. 



One's Complement

RepInteger
1000-7
1001-6
1010-5
1011-4
1100-3
1101-2
1110-1
1111-0
00000
00011
00102
00113

4
5
6
7

0100
0101
0110
0111
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Definition
High-order bit has weight -7 (- 2n + 1 )

B

0010B

1010 = (1*-7)+(0*4)+(1*2)+(0*1)
= -5
= (0*-7)+(0*4)+(1*2)+(0*1)
= 2



One's Complement (cont.)

7 0111
- two reps of zero 54

RepInteger
1000-7
1001-6
1010-5
1011-4
1100-3
1101-2
1110-1
1111-0
00000
00011
00102
00113
01004
01015
01106

Computing negative
neg(x) = ~x

neg(0101 ) = 1010B B

Pros and cons
+ symmetric

neg(1010B) = 0101B

Computing negative (alternative)
neg(x) = 1111B - x

neg(0101 ) = 1111 – 0101B B B
= 1010B

neg(1010B) = 1111B – 1010B
= 0101B



Two’s Complement
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RepInteger
1000-8
1001-7
1010-6
1011-5
1100-4
1101-3
1110-2
1111-1
00000
00011
00102
00113
01004
01015
01106
01117

Definition
High-order bit has weight -8 (-2n)

B

0010B

1010 = (1*-8)+(0*4)+(1*2)+(0*1)
= -6
= (0*-8)+(0*4)+(1*2)+(0*1)
= 2



Two’s Complement (cont.)
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RepInteger
1000-8
1001-7
1010-6
1011-5
1100-4
1101-3
1110-2
1111-1
00000
00011
00102
00113
01004
01015
01106
01117

Computing negative
neg(x) = ~x + 1
neg(x) = onescomp(x) + 1

1011B=1+1010B=neg(0101B)
0101B=1+0100B=neg(1011B)

Pros and cons
- not symmetric
+ one rep of zero



Two’s Complement (cont.)
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Almost all computers use two’s complement to represent  
signed integers

Why?
• Arithmetic is easy
• Will become clear soon

Hereafter, assume two’s complement representation of
signed integers



Two's Complement

• Way to represent positive integers, negative integers, and zero

• If 1 is in the most significant bit (generally leftmost bit in this
class),then it is negative



Decimal toTwo's  Complement

• Example: -5 decimal to binary (twos complement)

http://sandbox.mc.edu/~bennet/cs110/tc/dtotc.html



Decimal toTwo's  Complement

• Example:-5 decimal to binary (twos complement)

• First, convert the magnitude to an unsigned representation



• Example:-5 decimal to binary (two's complement)

• First, convert the magnitude to an unsigned representation

5 (decimal) = 0101 (binary)

Decimal toTwo's  Complement



• Then, take the bits, and negate them

Decimal toTwo's  Complement



• Then, take the bits, and negate them

0101

Decimal toTwo's  Complement



• Then, take the bits, and negate them

~0101 =  
1010

Decimal toTwo's  Complement



• Finally, add one:

Decimal toTwo's  Complement



• Finally, add one:

1010

Decimal toTwo's  Complement



• Finally, add one:
1010 + 1 =
1011

Decimal toTwo's  Complement



• Same operation: negate the bits, and add one

Two’s  Complement to Decimal



• Same operation: negate the bits, and add one

1011

Two’s  Complement to Decimal



• Same operation: negate the bits, and add one
~1011 =  
0100

Two’s  Complement to Decimal



• Same operation: negate the bits, and add one

0100

Two’s  Complement to Decimal



• Same operation: negate the bits, and add one
0100 + 1 =
0101

Two’s  Complement to Decimal



• Same operation: negate the bits, and add one

0100 + 1 =
0101 =
-5

We started with
1011 - negative

Two’s  Complement to Decimal



Addition

http://sandbox.mc.edu/~bennet/cs110/textbook/module3_2.html



Building UpAddition

• Question: how might we add the following, in decimal?

986
+123
----

?



• Question: how might we add the following, in decimal?

Building UpAddition

986
+123
----

?

6
+3
--
?



• Question: how might we add the following, in decimal?

6
+3
--
9

8
+2
--
?

Building UpAddition

986
+123
----

?



Building UpAddition

6
+3
--
9

8
+2
--
0

Carry:1

• Question: how might we add the following, in decimal?

986
+123
----

?



Building UpAddition

6
+3
--
9

8
+2
--
0

1
9
+1
--
?

• Question: how might we add the following, in decimal?

986
+123
----

?



Building UpAddition

6
+3
--
9

8
+2
--
0

1
9
+1
--
1

Carry:1

• Question: how might we add the following, in decimal?

986
+123
----

?



Building UpAddition

6
+3
--
9

8
+2
--
0

1
9
+1
--
1

1
+0
--
1

• Question: how might we add the following, in decimal?

986
+123
----

?



Core Concepts

• We have a “primitive” notion of adding single digits, along 
with an idea of carrying digits

• We can build on this notion to add numbers together that 
are more than one digit long









Adding Multiple Bits

• How might we add the numbers below?

011
+001

------



Adding Multiple Bits

• How might we add the numbers below?

0
011
+001

------



Adding Multiple Bits

------
0

• How might we add the numbers below?

10
011
+001



Adding Multiple Bits

------
00

• How might we add the numbers below?

110
011
+001



Adding Multiple Bits

------
100

• How might we add the numbers below?

0110
011
+001



Adding Multiple Bits

------
100

• How might we add the numbers below?

0110
011
+001

Output Carry Bit Result Bits



Another Example

111
+001

------



Another Example

0
111
+001

------



Another Example

------
0

10
111
+001



Another Example

------
00

110
111
+001



Another Example

------
000

1110
111
+001

Output Carry Bit Result Bits



Output Carry Bit Significance

• For unsigned numbers, it indicates if the result did not fit all
the way into the number of bits allotted

• May be an error condition for software



Signed Addition

• Question: what isthe result of the following operation?

011
+011
----

?



Signed Addition

• Question:what is the result of the following operation?

011
+011
----
0110



Overflow

• In this situation, overflow occurred: this means that both the

operands had the same sign, and the result’s sign differed

• Possibly a software error

011
+011
----
110



Overflow vs.Carry

• These are different ideas

• Carry is relevant to unsigned values

• Overflow is relevant to signed values



Adding Signed Integers

3
+ 3

11
0011B

+ 0011B
7

+ 1

111
0111B

+ 0001B

-8 1000B

pos + pos pos + pos (overflow)

3
+ -1

1111
0011B

+ 1111B

6 0110B

pos + neg

-3
+ -2

11
1101B

+ 1110B

-5 11011B

2 10010B

neg + neg

-6
+ -5

1 1
1010B

+ 1011B

5 10101B

neg + neg (overflow)



Subtracting Signed Integers

1
22

0011B30011B3
+ 1100B-4+- 0100B- 4

1111B-11111B-1

111
1011-51011B-5

+ 1110-2+- 0010B- 2

11001-71001B-7

Perform subtraction  
with borrows

Compute two’s comp  
and addor



Shifting Signed Integers
Bitwise (logical/arithmetic) left shift (<<): fill on right with zeros

Bitwise arithmetic right shift: fill on left with sign bit

Results are mod 24

6 >> 1 => 3

-6 >> 1 => -3

3 << 1 => 6

-3 << 1 => -6

0011B 0110B

1101B 1010B

0110B 0011B

1010B 1101B

Shift by n = 
multiplying by 2n

Shift by n = dividing by 2n

and Round-floor



Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros

Right shift (>>) could be logical or arithmetic
• Compiler designer decides
• Logical shift is ideal for unsigned binary numbers
• Arithmetic shift is ideal for signed two’s complement binary numbers

6 >> 1 => 3

-6 >> 1 => 5

0110B 0011B

1010B 0101B
?



Other Operations on Signed Ints

Bitwise NOT (~)
• Same as with unsigned ints

Bitwise AND (&)
• Same as with unsigned ints

Bitwise OR: (|)
• Same as with unsigned ints

Bitwise exclusive OR (^)
• Same as with unsigned ints



AND (&) Operation:
X & 0 = 0 & X = 0
X & 1 = 1 & X = X
X & X = X

OR (|) Operation:
X | 1 = 1 | X = 1
X | 0 = 0 | X = X
X | X = X

XOR (^) Operation:

X ^ 1 = 1 ^ X = ~X
X ^ 0 = 0 ^ X = X
X ^ X = 0

BitwiseOperations as Masks

X: it is an unknown binary number and can be either 0 or 1



Specify the mask you would need to isolate bit 0 of the unknown number. The result 
of the operation should be 0 (0x0000) if bit 0 is 0, and non-zero if bit 0 is 1. Express it 
as a 4-digit hexadecimal number.
Answer: 
We know that 1 hexadecimal digit = 4 bits in binary

15…                …… 3 2 1 0      Bit position
XXXX  XXXX XXXX XXXX  Unknown number

Operation --> ?    ????   ????   ????  ????      Mask
--------------------------------------

if bit 0 is 0   0000  0000  0000  0000     zero (0x0000)
if bit 0 is 1   0000  0000  0000   0001    nonzero (0x0001)

In this case, we can use AND operation (&) and then the mask(16 bits) will be as
0000  0000  0000  0001  => 0001 in hexadecimal   

Therefore, the answer is answer & as the operation and 0x0001 as the mask.

Mask Example



Specify the mask you would need to set bit 1 of the unknown number to zero. That is, 
the result of this operation results in a new number, which the unknown number will be 
subsequently set to. Express it as a 4-digit hexadecimal number.

Answer: 
We know that 1 hexadecimal digit = 4 bits in binary

15…                …… 3 2 1 0      Bit position
XXXX  XXXX XXXX XXXX  Unknown number

Operation --> ?    ????   ????   ????  ????      Mask
--------------------------------------

XXXX  XXXX XXXX XX0X

In this case, we can use AND operation (&) and then the mask(16 bits) will be as
1111  1111  1111  1101  => FFFD in hexadecimal   

Therefore, the answer is & as the operation and 0xFFFD as the mask.

Mask Example



Summary

The binary, hexadecimal, and octal number systems  

Finite representation of unsigned integers

Finite representation of signed integers

Essential for proper understanding of
• C or Java primitive data types
• Assembly language
• Machine language


